Ion-scale spectral break of solar wind turbulence at high and low beta
نویسندگان
چکیده
The power spectrum of magnetic fluctuations in the solar wind at 1 AU displays a break between two power laws in the range of spacecraft-frame frequencies 0.1 to 1 Hz. These frequencies correspond to spatial scales in the plasma frame near the proton gyroradius ρi and proton inertial length di. At 1 AU it is difficult to determine which of these is associated with the break, since [Formula: see text] and the perpendicular ion plasma beta is typically β⊥i∼1. To address this, several exceptional intervals with β⊥i≪1 and β⊥i≫1 were investigated, during which these scales were well separated. It was found that for β⊥i≪1 the break occurs at di and for β⊥i≫1 at ρi, i.e., the larger of the two scales. Possible explanations for these results are discussed, including Alfvén wave dispersion, damping, and current sheets.
منابع مشابه
Kinetic simulations of magnetized turbulence in astrophysical plasmas.
This Letter presents the first ab initio, fully electromagnetic, kinetic simulations of magnetized turbulence in a homogeneous, weakly collisional plasma at the scale of the ion Larmor radius (ion gyroscale). Magnetic- and electric-field energy spectra show a break at the ion gyroscale; the spectral slopes are consistent with scaling predictions for critically balanced turbulence of Alfvén wave...
متن کاملSolar wind vs magnetosheath turbulence and Alfvén vortices
In this paper we give firstly a broad review of the space plasma turbulence around the ion characteristic space and temporal scales within two natural laboratories, the solar wind and the Earth magnetosheath. In both regions power law spectra of magnetic fluctuations are observed. In both regions these spectra have a break in the vicinity of the ion cyclotron frequency. A distinctive feature of...
متن کاملPower and spectral index anisotropy of the entire inertial range of turbulence in the fast solar wind
We measure the power and spectral index anisotropy of magnetic field fluctuations in fast solar wind turbulence from scales larger than the outer scale down to the ion gyroscale, thus covering the entire inertial range. We show that the power and spectral indices above the outer scale of turbulence are approximately isotropic. The turbulent cascade causes the power anisotropy at smaller scales ...
متن کاملSmall scale energy cascade of the solar wind turbulence
Magnetic fluctuations in the solar wind are distributed according to Kolmogorov’s power law f below the ion cyclotron frequency fci. Above this frequency, the observed steeper power law is usually interpreted in two different ways: a dissipative range of the solar wind turbulence or another turbulent cascade, the nature of which is still an open question. Using the Cluster magnetic data we show...
متن کاملSpectral features of solar wind turbulent plasma
Spectral properties of a fully compressible solar wind Hall Magnetohydrodynamic plasma are investigated by means of time dependent three dimensional Hall MHD simulations. Our simulations, in agreement with spacecraft data, identify a spectral break in turbulence spectra at characteristic length-scales associated with electromagnetic fluctuations that are smaller than the ion gyroradius. In this...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 41 شماره
صفحات -
تاریخ انتشار 2014